Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1862(9): 183342, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32416190

RESUMO

Peroxisomes are eukaryotic organelles that function in numerous metabolic pathways and defects in peroxisome function can cause serious developmental brain disorders such as adrenoleukodystrophy (ALD). Peroxisomal membrane proteins (PMPs) play a crucial role in regulating peroxisome function. Therefore, PMP homeostasis is vital for peroxisome function. Recently, we established that certain PMPs are degraded by the Ubiquitin Proteasome System yet little is known about how faulty/non-functional PMPs undergo quality control. Here we have investigated the degradation of Pxa1p, a fatty acid transporter in the yeast Saccharomyces cerevisiae. Pxa1p is a homologue of the human protein ALDP and mutations in ALDP result in the severe disorder ALD. By introducing two corresponding ALDP mutations into Pxa1p (Pxa1MUT), fused to mGFP, we show that Pxa1MUT-mGFP is rapidly degraded from peroxisomes in a proteasome-dependent manner, while wild type Pxa1-mGFP remains relatively stable. Furthermore, we identify a role for the ubiquitin ligase Ufd4p in Pxa1MUT-mGFP degradation. Finally, we establish that inhibiting Pxa1MUT-mGFP degradation results in a partial rescue of Pxa1p activity in cells. Together, our data demonstrate that faulty PMPs can undergo proteasome-dependent quality control. Furthermore, our observations may provide new insights into the role of ALDP degradation in ALD.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Adrenoleucodistrofia/patologia , Humanos , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética , Mutação/genética , Peroxissomos/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Saccharomyces cerevisiae/genética
2.
J Mol Biol ; 427(6 Pt A): 1176-90, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25681696

RESUMO

Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes.


Assuntos
Peroxissomos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Peroxinas , Dobramento de Proteína , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia
3.
J Cell Biol ; 155(6): 979-90, 2001 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-11733545

RESUMO

In vivo time-lapse microscopy reveals that the number of peroxisomes in Saccharomyces cerevisiae cells is fairly constant and that a subset of the organelles are targeted and segregated to the bud in a highly ordered, vectorial process. The dynamin-like protein Vps1p controls the number of peroxisomes, since in a vps1Delta mutant only one or two giant peroxisomes remain. Analogous to the function of other dynamin-related proteins, Vps1p may be involved in a membrane fission event that is required for the regulation of peroxisome abundance. We found that efficient segregation of peroxisomes from mother to bud is dependent on the actin cytoskeleton, and active movement of peroxisomes along actin filaments is driven by the class V myosin motor protein, Myo2p: (a) peroxisomal dynamics always paralleled the polarity of the actin cytoskeleton, (b) double labeling of peroxisomes and actin cables revealed a close association between both, (c) depolymerization of the actin cytoskeleton abolished all peroxisomal movements, and (d) in cells containing thermosensitive alleles of MYO2, all peroxisome movement immediately stopped at the nonpermissive temperature. In addition, time-lapse videos showing peroxisome movement in wild-type and vps1Delta cells suggest the existence of various levels of control involved in the partitioning of peroxisomes.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ligação ao GTP , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/genética , Deleção de Genes , Proteínas de Fluorescência Verde , Indicadores e Reagentes/metabolismo , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Dados de Sequência Molecular , Mutagênese/fisiologia , Sondas de Oligonucleotídeos , Receptor 1 de Sinal de Orientação para Peroxissomos , Polímeros/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular
4.
Mol Cell Biol ; 21(13): 4321-9, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11390660

RESUMO

We have characterized the role of YPR128cp, the orthologue of human PMP34, in fatty acid metabolism and peroxisomal proliferation in Saccharomyces cerevisiae. YPR128cp belongs to the mitochondrial carrier family (MCF) of solute transporters and is localized in the peroxisomal membrane. Disruption of the YPR128c gene results in impaired growth of the yeast with the medium-chain fatty acid (MCFA) laurate as a single carbon source, whereas normal growth was observed with the long-chain fatty acid (LCFA) oleate. MCFA but not LCFA beta-oxidation activity was markedly reduced in intact ypr128cDelta mutant cells compared to intact wild-type cells, but comparable activities were found in the corresponding lysates. These results imply that a transport step specific for MCFA beta-oxidation is impaired in ypr128cDelta cells. Since MCFA beta-oxidation in peroxisomes requires both ATP and CoASH for activation of the MCFAs into their corresponding coenzyme A esters, we studied whether YPR128cp is an ATP carrier. For this purpose we have used firefly luciferase targeted to peroxisomes to measure ATP consumption inside peroxisomes. We show that peroxisomal luciferase activity was strongly reduced in intact ypr128cDelta mutant cells compared to wild-type cells but comparable in lysates of both cell strains. We conclude that YPR128cp most likely mediates the transport of ATP across the peroxisomal membrane.


Assuntos
Proteínas de Transporte/metabolismo , Ácidos Graxos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Nucleotídeos , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Fracionamento Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Reporter/genética , Glucose/metabolismo , Humanos , Immunoblotting , Ácidos Láuricos/metabolismo , Luciferases/genética , Luciferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Ácido Oleico/metabolismo , Oxirredução , Peroxissomos/química , Peroxissomos/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
5.
J Cell Biol ; 150(3): 489-98, 2000 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-10931862

RESUMO

The Saccharomyces cerevisiae peroxisomal membrane protein Pex11p has previously been implicated in peroxisome proliferation based on morphological observations of PEX11 mutant cells. Pex11p-deficient cells fail to increase peroxisome number in response to growth on fatty acids and instead accumulate a few giant peroxisomes. We report that mutants deficient in genes required for medium-chain fatty acid (MCFA) beta-oxidation display the same phenotype as Pex11p-deficient cells. Upon closer inspection, we found that Pex11p is required for MCFA beta-oxidation. Disruption of the PEX11 gene results in impaired formation of MCFA-CoA esters as measured in intact cells, whereas their formation is normal in cell lysates. The sole S. cerevisiae MCFA-CoA synthetase (Faa2p) remains properly localized to the inner leaflet of the peroxisomal membrane in PEX11 mutant cells. Therefore, the in vivo latency of MCFA activation observed in Pex11p-deficient cells suggests that Pex11p provides Faa2p with substrate. When PEX11 mutant cells are shifted from glucose to oleate-containing medium, we observed an immediate deficiency in beta-oxidation of MCFAs whereas giant peroxisomes and a failure to increase peroxisome abundance only became apparent much later. Our observations suggest that the MCFA oxidation pathway regulates the level of a signaling molecule that modulates the number of peroxisomal structures in a cell.


Assuntos
Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/fisiologia , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Acil-CoA Oxidase , Coenzima A Ligases/isolamento & purificação , Coenzima A Ligases/metabolismo , Proteínas de Membrana/genética , Mutação , Ácido Oleico/metabolismo , Oxirredução , Oxirredutases/genética , Peroxinas , Peroxissomos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura
6.
Biochim Biophys Acta ; 1486(1): 18-27, 2000 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-10856710

RESUMO

The peroxisomal membrane forms a permeability barrier for a wide variety of metabolites required for and formed during fatty acid beta-oxidation. To communicate with the cytoplasm and mitochondria, peroxisomes need dedicated proteins to transport such hydrophilic molecules across their membranes. Genetic and biochemical studies in the yeast Saccharomyces cerevisiae have identified enzymes for redox shuttles as well as the first peroxisomal membrane transporter. This peroxisomal ATP-binding cassette transporter (Pat) is highly homologous to the gene mutated in X-linked adrenoleukodystrophy (X-ALD). The yeast Pat is required for import of activated fatty acids into peroxisomes suggesting that this is the primary defect in X-ALD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Membranas Intracelulares/metabolismo , Peroxissomos/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Acil Coenzima A/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Proteínas de Membrana/genética , Oxirredução , Saccharomyces cerevisiae
8.
EMBO J ; 19(2): 223-33, 2000 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-10637226

RESUMO

The mechanisms by which peroxisomal membrane proteins (PMPs) are targeted to and inserted into membranes are unknown, as are the required components. We show that among a collection of 16 Saccharomyces cerevisiae peroxisome biogenesis (pex) mutants, two mutants, pex3Delta and pex19Delta, completely lack detectable peroxisomal membrane structures and mislocalize their PMPs to the cytosol where they are rapidly degraded. The other pexDelta mutants contain membrane structures that are properly inherited during vegetative growth and that house multiple PMPs. Even Pex15p requires Pex3p and Pex19p for localization to peroxisomal membranes. This PMP was previously hypothesized to travel via the endoplasmic reticulum (ER) to peroxisomes. We provide evidence that ER-accumulated Pex15p is not a sorting intermediate on its way to peroxisomes. Our results show that Pex3p and Pex19p are required for the proper localization of all PMPs tested, including Pex15p, whereas the other Pex proteins might only be required for targeting/import of matrix proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Cinética , Proteínas de Membrana/genética , Microscopia Eletrônica , Mutagênese , Peroxinas , Peroxissomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
9.
EMBO Rep ; 1(1): 40-6, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11256623

RESUMO

All eukaryotes so far studied, including animals, plants, yeasts and trypanosomes, have two pathways to target proteins to peroxisomes. These two pathways are specific for the two types of peroxisome targeting signal (PTS) present on peroxisomal matrix proteins. Remarkably, the complete genome sequence of Caenorhabditis elegans lacks the genes encoding proteins specific for the PTS2 targeting pathway. Here we show, by expression of green fluorescent protein (GFP) reporters for both pathways, that the PTS2 pathway is indeed absent in C. elegans. Lack of this pathway in man causes severe disease due to mislocalization of PTS2-containing proteins. This raises the question as to how C. elegans has accommodated the absence of the PTS2 pathway. We found by in silico analysis that C. elegans orthologues of PTS2-containing proteins have acquired a PTS1. We propose that switching of targeting signals has allowed the PTS2 pathway to be lost in the phylogenetic lineage leading to C. elegans.


Assuntos
Alquil e Aril Transferases/metabolismo , Caenorhabditis elegans/fisiologia , Peroxissomos/metabolismo , Sinais Direcionadores de Proteínas/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Alquil e Aril Transferases/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Genes Reporter/genética , Humanos , Microscopia de Fluorescência , Receptor 2 de Sinal de Orientação para Peroxissomos , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
10.
Cell Biochem Biophys ; 32 Spring: 1-8, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11330035

RESUMO

The biogenesis of peroxisomes involves the synthesis of new proteins that after, completion of translation, are targeted to the organelle by virtue of peroxisomal targeting signals (PTS). Two types of PTSs have been well characterized for import of matrix proteins (PTS1 and PTS2). Induction of the genes encoding these matrix proteins takes place in oleate-containing medium and is mediated via an oleate response element (ORE) present in the region preceding these genes. The authors have searched the yeast genome for OREs preceding open reading frames (ORFs), and for ORFs that contain either a PTS1 or PTS2. Of the ORFs containing an ORE, as well as either a PTS1 or a PTS2, many were known to encode bona fide peroxisomal matrix proteins. In addition, candidate genes were identified as encoding putative new peroxisomal proteins. For one case, subcellular location studies validated the in silicio prediction. This gene encodes a new peroxisomal thioesterase.


Assuntos
Genoma Fúngico , Peroxissomos/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
11.
EMBO J ; 18(21): 5843-52, 1999 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-10545096

RESUMO

In Saccharomyces cerevisiae, beta-oxidation of fatty acids is confined to peroxisomes. The acetyl-CoA produced has to be transported from the peroxisomes via the cytoplasm to the mitochondrial matrix in order to be degraded to CO(2) and H(2)O. Two pathways for the transport of acetyl-CoA to the mitochondria have been proposed. The first involves peroxisomal conversion of acetyl-CoA into glyoxylate cycle intermediates followed by transport of these intermediates to the mitochondria. The second pathway involves peroxisomal conversion of acetyl-CoA into acetylcarnitine, which is subsequently transported to the mitochondria. Using a selective screen, we have isolated several mutants that are specifically affected in the second pathway, the carnitine-dependent acetyl-CoA transport from the peroxisomes to the mitochondria, and assigned these CDAT mutants to three different complementation groups. The corresponding genes were identified using functional complementation of the mutants with a genomic DNA library. In addition to the previously reported carnitine acetyl-CoA transferase (CAT2), we identified the genes for the yeast orthologue of the human mitochondrial carnitine acylcarnitine translocase (YOR100C or CAC) and for a transport protein (AGP2) required for carnitine transport across the plasma membrane.


Assuntos
Acetilcoenzima A/metabolismo , Sistemas de Transporte de Aminoácidos , Carnitina/metabolismo , Proteínas de Transporte/genética , Membrana Celular/química , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Simportadores , Transporte Biológico/genética , Carnitina Aciltransferases/metabolismo , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Proteínas de Transporte/metabolismo , Clonagem Molecular , Proteínas Fúngicas , Genes Fúngicos , Proteínas de Membrana/química , Microscopia Imunoeletrônica , Mutação , Ácido Oleico/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Biochim Biophys Acta ; 1451(1): 17-34, 1999 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-10446385

RESUMO

Peroxisomes are organelles that confine an important set of enzymes within their single membrane boundaries. In man, a wide variety of genetic disorders is caused by loss of peroxisome function. In the most severe cases, the clinical phenotype indicates that abnormalities begin to appear during embryological development. In less severe cases, the quality of life of adults is affected. Research on yeast model systems has contributed to a better understanding of peroxisome formation and maintenance. This framework of knowledge has made it possible to understand the molecular basis of most of the peroxisome biogenesis disorders. Interestingly, most peroxisome biogenesis disorders are caused by a failure to target peroxisomal proteins to the organellar matrix or membrane, which classifies them as protein targeting diseases. Here we review recent fundamental research on peroxisomal protein targeting and discuss a few burning questions in the field concerning the origin of peroxisomes.


Assuntos
Membranas Intracelulares/química , Microcorpos/química , Proteínas/química , Proteínas de Membrana/química , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos , Dobramento de Proteína , Receptores Citoplasmáticos e Nucleares/química , Transdução de Sinais
13.
FEBS Lett ; 453(1-2): 210-4, 1999 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-10403405

RESUMO

Conditions that stress the endoplasmic reticulum (ER) in Saccharomyces cerevisiae can elicit a combination of an unfolded protein response (UPR) and an inositol response (IR). This results in increased synthesis of ER protein-folding factors and of enzymes participating in phospholipid biosynthesis. It was suggested that in cells grown on glucose or galactose medium, the UPR and the IR are linked and controlled by the ER stress sensor Ire1p. However, our studies suggest that during growth on oleate the IR is controlled both by an Ire1p-dependent pathway and by an Ire1p-independent pathway.


Assuntos
Retículo Endoplasmático/fisiologia , Proteínas Fúngicas/metabolismo , Glicoproteínas de Membrana/metabolismo , Microcorpos/fisiologia , Dobramento de Proteína , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Adaptação Biológica , Retículo Endoplasmático/ultraestrutura , Galactose/metabolismo , Deleção de Genes , Proteínas de Membrana/biossíntese , Mio-Inositol-1-Fosfato Sintase/biossíntese , Ácido Oleico/metabolismo , Fosfoproteínas/biossíntese
14.
J Cell Biol ; 142(2): 421-34, 1998 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-9679141

RESUMO

The Saccharomyces cerevisiae DJP1 gene encodes a cytosolic protein homologous to Escherichia coli DnaJ. DnaJ homologues act in conjunction with molecular chaperones of the Hsp70 protein family in a variety of cellular processes. Cells with a DJP1 gene deletion are viable and exhibit a novel phenotype among cytosolic J-protein mutants in that they have a specific impairment of only one organelle, the peroxisome. The phenotype was also unique among peroxisome assembly mutants: peroxisomal matrix proteins were mislocalized to the cytoplasm to a varying extent, and peroxisomal structures failed to grow to full size and exhibited a broad range of buoyant densities. Import of marker proteins for the endoplasmic reticulum, nucleus, and mitochondria was normal. Furthermore, the metabolic adaptation to a change in carbon source, a complex multistep process, was unaffected in a DJP1 gene deletion mutant. We conclude that Djp1p is specifically required for peroxisomal protein import.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Microcorpos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico Ativo , Clonagem Molecular , Citosol/metabolismo , Primers do DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas Fúngicas/genética , Deleção de Genes , Expressão Gênica , Genes Fúngicos , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Homologia de Sequência de Aminoácidos
15.
Hum Mol Genet ; 7(5): 847-53, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9536089

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) is a genetic disorder which is clinically characterized by rhizomelic shortening of the upper extremities, typical dysmorphic facial appearance, congenital contractures and severe growth and mental retardation. Patients with RCDP can be subdivided into three subgroups based on biochemical analyses and complementation studies. The largest subgroup contains patients with mutations in the PEX7 gene encoding the PTS2 receptor. This results in multiple peroxisomal abnormalities which includes a deficiency of acyl-CoA:dihydroxyacetonephosphate acyltransferase (DHAPAT), alkyl-dihydroxyacetonephosphate synthase (alkyl-DHAP synthase), peroxisomal 3-ketoacyl-CoA thiolase and phytanoyl-CoA hydroxylase, although there are differences in the extent of the deficiencies observed. Patients in the two other subgroups have been reported to be either deficient in the activity of DHAPAT (RCDP type 2) or alkyl-DHAP synthase (RCDP type 3) while no other abnormalities could be observed. To examine whether the gene encoding DHAPAT is mutated in patients with RCDP type 2, we determined the N-terminal amino acid sequence of the enzyme isolated from human placenta. Using this sequence as a query, we identified a 2040 bp open reading frame (ORF) in the human database of expressed sequence tags. Expression of this ORF in the yeast Saccharomyces cerevisiae showed that we have identified the DHAPAT cDNA. The deduced amino acid sequence revealed no PTS2 consensus sequence. In contrast DHAPAT appears to contain a putative PTS1 at the extreme C-terminus. All RCDP type 2 patients analyzed were found to contain mutations in their DHAPAT cDNA. This demonstrates that RCDP type 2 is the result of mutations in DHAPAT.


Assuntos
Aciltransferases/genética , Condrodisplasia Punctata Rizomélica/enzimologia , Condrodisplasia Punctata Rizomélica/genética , Aciltransferases/biossíntese , Sequência de Aminoácidos , Animais , Sequência de Bases , Análise Mutacional de DNA , DNA Complementar/isolamento & purificação , Feminino , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
16.
EMBO J ; 17(3): 677-87, 1998 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-9450993

RESUMO

The beta-oxidation of saturated fatty acids in Saccharomyces cerevisiae is confined exclusively to the peroxisomal compartment of the cell. Processing of mono- and polyunsaturated fatty acids with the double bond at an even position requires, in addition to the basic beta-oxidation machinery, the contribution of the NADPH-dependent enzyme 2,4-dienoyl-CoA reductase. Here we show by biochemical cell fractionation studies that this enzyme is a typical constituent of peroxisomes. As a consequence, the beta-oxidation of mono- and polyunsaturated fatty acids with double bonds at even positions requires stoichiometric amounts of intraperoxisomal NADPH. We suggest that NADP-dependent isocitrate dehydrogenase isoenzymes function in an NADP redox shuttle across the peroxisomal membrane to keep intraperoxisomal NADP reduced. This is based on the finding of a third NADP-dependent isocitrate dehydrogenase isoenzyme, Idp3p, next to the already known mitochondrial and cytosolic isoenzymes, which turned out to be present in the peroxisomal matrix. Our proposal is strongly supported by the observation that peroxisomal Idp3p is essential for growth on the unsaturated fatty acids arachidonic, linoleic and petroselinic acid, which require 2, 4-dienoyl-CoA reductase activity. On the other hand, growth on oleate which does not require 2,4-dienoyl-CoA reductase, and NADPH is completely normal in Deltaidp3 cells.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Microcorpos/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Ácido Araquidônico/farmacologia , Carbono/farmacologia , Divisão Celular/efeitos dos fármacos , Fenômenos Químicos , Físico-Química , Citosol/enzimologia , Ácidos Graxos Dessaturases/análise , Ácidos Graxos Dessaturases/efeitos dos fármacos , Ácidos Graxos/farmacologia , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Ligação de Hidrogênio , Isocitrato Desidrogenase/metabolismo , Isomerismo , Ácido Linoleico/farmacologia , Microcorpos/genética , Microcorpos/ultraestrutura , Mitocôndrias/enzimologia , NADP/metabolismo , NADP/farmacologia , Ácido Oleico/farmacologia , Ácidos Oleicos/farmacologia , Oxirredução , Receptor 1 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/efeitos dos fármacos
17.
Eur J Biochem ; 249(3): 657-61, 1997 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-9395310

RESUMO

In the yeast Saccharomyces cerevisiae, fatty acid beta-oxidation is restricted to peroxisomes. Previous studies have shown two possible routes by which fatty acids enter the peroxisome. The first route involves transport of medium-chain fatty acids across the peroxisomal membrane as free fatty acids, followed by activation within the peroxisome by Faa2p, an acyl-CoA synthetase. The second route involves transport of long-chain fatty acids. Long-chain fatty acids enter the peroxisome via a route that involves activation in the extraperoxisomal space, followed by transport across the peroxisomal membrane. It has been suggested that this transport is dependent upon the peroxisomal ATP-binding-cassette transporters Pxa1p and Pxa2p. In this paper we investigated whether Pxa2p is directly responsible for the transport of C18:1-CoA, a long-chain acyl-CoA ester. Using protoplasts in which the plasma membrane has been selectively permeabilised by digitonin, we show that C18:1-CoA, but not C8:0-CoA, enters the peroxisome via Pxa2p, in an ATP-dependent fashion. The results obtained may contribute to the elucidation of the primary defect in the human disease X-linked adrenoleukodystrophy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Acil Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Microcorpos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Adrenoleucodistrofia/etiologia , Transporte Biológico , Permeabilidade da Membrana Celular , Digitonina/farmacologia , Proteínas Fúngicas/metabolismo , Humanos , Oxirredução , Protoplastos/metabolismo
18.
Nat Genet ; 15(4): 377-80, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9090382

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) is an autosomal recessive disease characterized clinically by a disproportionately short stature primarily affecting the proximal parts of the extremities, typical dysmorphic facial appearance, congenital contractures and severe growth and mental retardation. Although some patients have single enzyme deficiencies, the majority of RCDP patients (86%) belong to a single complementation group (CG11, also known as complementation group I, Amsterdam nomenclature). Cells from CG11 show a tetrad of biochemical abnormalities: a deficiency of i) dihydroxyacetonephosphate acyltransferase, ii) alkyldihydroxyacetonephosphate synthase, iii) phytanic acid alpha-oxidation and iv) inability to import peroxisomal thiolase. These deficiencies indicate involvement of a component required for correct targeting of these peroxisomal proteins. Deficiencies in peroxisomal targeting are also found in Saccharomyces cerevisiae pex5 and pex7 mutants, which show differential protein import deficiencies corresponding to two peroxisomal targeting sequences (PTS1 and PTS2). These mutants lack their PTS1 and PTS2 receptors, respectively. Like S. cerevisiae pex cells, RCDP cells from CG11 cannot import a PTS2 reporter protein. Here we report the cloning of PEX7 encoding the human PTS2 receptor, based on its similarity to two yeast orthologues. All RCDP patients from CG11 with detectable PEX7 mRNA were found to contain mutations in PEX7. A mutation resulting in C-terminal truncation of PEX7 cosegregates with the disease and expression of PEX7 in RCDP fibroblasts from CG11 rescues the PTS2 protein import deficiency. These findings prove that mutations in PEX7 cause RCDP, CG11.


Assuntos
Condrodisplasia Punctata Rizomélica/genética , Receptores Citoplasmáticos e Nucleares/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Fibroblastos , Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Receptor 2 de Sinal de Orientação para Peroxissomos , Polimorfismo Conformacional de Fita Simples , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Recombinantes de Fusão , Homologia de Sequência de Aminoácidos
19.
EMBO J ; 15(15): 3813-22, 1996 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-8670886

RESUMO

Peroxisomes of Saccharomyces cerevisiae are the exclusive site of fatty acid beta-oxidation. We have found that fatty acids reach the peroxisomal matrix via two independent pathways. The subcellular site of fatty acid activation varies with chain length of the substrate and dictates the pathway of substrate entry into peroxisomes. Medium-chain fatty acids are activated inside peroxisomes hby the acyl-CoA synthetase Faa2p. On the other hand, long-chain fatty acids are imported from the cytosolic pool of activated long-chain fatty acids via Pat1p and Pat2p, peroxisomal membrane proteins belonging to the ATP binding cassette transporter superfamily. Pat1p and Pat2p are the first examples of membrane proteins involved in metabolite transport across the peroxisomal membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Microcorpos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Transporte Biológico Ativo , Northern Blotting , Western Blotting , Coenzima A Ligases/metabolismo , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Ácido Oleico , Ácidos Oleicos/metabolismo , Saccharomyces cerevisiae/genética
20.
Hum Genet ; 89(2): 213-22, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1375184

RESUMO

The polymorphic patterns of human salivary amylase of a large number of individuals of Caucasian origin were determined by using isoelectric focusing and polyacrylamide gel electrophoresis. Nine different salivary amylase protein variants were found; three of them are recorded for the first time and their heredity is shown. Some of the variants are encoded by haplotypes expressing three allozymes. Most variants display low frequencies. Analysis of the relative intensities of variant-specific isozyme bands, combined with segregation analysis, show that extensive quantitative variation is present in the population. The numbers of salivary amylase genes in some families showing quantitative variation at the protein level have been estimated by the polymerase chain reaction. We present evidence that quantitative variations in amylase protein patterns do not always reflect variations in gene copy number but that other mechanisms are also involved.


Assuntos
Amilases/genética , Família Multigênica/genética , Glândulas Salivares/enzimologia , Amilases/química , Sequência de Bases , Feminino , Variação Genética/genética , Humanos , Focalização Isoelétrica , Isoenzimas/genética , Masculino , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo Genético/genética , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...